\qquad Date \qquad Period \qquad

Pendulum Activity

In this activity, you will measure the period and frequency of a simple pendulum. Using your thumb to hold a piece string against the table top, you will suspend a mass from the edge of your lab table, allowing it to swing it sideways.
Materials - 1 meter of string, $1 \times 50 \mathrm{~g}$ mass, $2 \times 100 \mathrm{~g}$ masses, and a stopwatch.

Period $(\mathbf{T})=$ the time it takes for the pendulum to complete one oscillation.
Frequency $(\mathbf{f})=$ the number of oscillations completed per unit time. It may be thought of as the RATE, or SPEED of repetition. A frequency of one oscillation per second is equal to 1 Hertz (abbreviated as, 1 Hz).
Amplitude $(A)=$ maximum distance from the rest position.

$$
f=1 / T \quad \text { and } \quad T=1 / f
$$

Predictions

1. If mass is increased, what do you think will happen to the frequency of the pendulum? Why?
2. If length is decreased, what do you think will happen to the frequency of the pendulum? Why?
3. If amplitude is increased, what do you think will happen to the frequency of the pendulum? Why?

Data and Calculations

	Total Time for 25 oscillations (seconds)	Period, T (seconds) show calculation	Frequency, f (Hz) show calculation
$\begin{gathered} \text { Trial A } \\ \mathrm{M}=50 \mathrm{~g} \\ \mathrm{~L}=0.70 \mathrm{~m} \\ \mathrm{~A}=10 \mathrm{~cm} \end{gathered}$			
$\begin{gathered} \text { Trial B } \\ M=200 \mathrm{~g} \\ \mathrm{~L}=0.70 \mathrm{~m} \\ \mathrm{~A}=10 \mathrm{~cm} \end{gathered}$			
$\begin{gathered} \text { Trial C } \\ 50 \mathrm{~g} \\ \mathrm{~L}=0.20 \mathrm{~m} \\ \mathrm{~A}=10 \mathrm{~cm} \end{gathered}$			
$\begin{gathered} \text { Trial D } \\ \mathrm{M}=50 \mathrm{~g} \\ \mathrm{~L}=0.70 \mathrm{~m} \\ \mathrm{~A}=20 \mathrm{~cm} \end{gathered}$			

*make all length measurements are to center of disks

Questions

1. Describe the relationship between frequency and mass. Justify your answer by stating which trials you used for comparison (A vs B, B vs C, etc)
2. Describe the relationship between frequency and string length. Justify your answer by stating which trials you used for comparison (A vs B, B vs C, etc)
3. Describe the relationship between frequency and amplitude. Justify your answer by stating which trials you used for comparison (A vs B, B vs C, etc)
