Activity Eight: Amino Acid Sequences and Evolutionary Relationships

Proteins play a major role in living organisms. Amino acids are the building blocks of proteins. The central dogma in molecular biology is that DNA determines the sequence of amino acids.

Biologists have perfected techniques for determining the sequence of amino acids in proteins. By comparing the amino acid sequences in homologous proteins of similar organisms and of diverse organisms, evolutionary relationships that might otherwise go undetected can be determined. Biologists believe that the greater the similarity between the amino acid sequences of the two organisms, the closer their relationship. Biologists have found that such biochemical evidence compares favorably with other lines of evidence for evolutionary relationships.

In this investigation, you will compare amino acid sequences in proteins of several vertebrates. You will also study amino acid differences and infer evolutionary relationship among some diverse organisms.

Part A. Comparing Amino Acid Sequences

1. Hemoglobin, a protein composed of several long chains of amino acids, is the oxygencarrying molecule in red blood cells. Examine figure 1, which compares corresponding portions of hemoglobin molecules in humans and five other vertebrate animals. The sequence shown is only a portion of a chain made up of 146 amino acids. The numbers on Figure 1 indicate the position of a particular amino acid in the chain. Human hemoglobin is being used as the standard for comparison.

	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101
Human	THR	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
Chimpanzee	THR	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
Gorilla	THR	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
Rhesus	GLN	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
Monkey															
Horse	ALA	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
Kangaroo	LYS	LEU	SER	GLU	LEU	HIS	CYS	ASP	LYS	LEU	HIS	VAL	ASP	PRO	GLU
	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
Human	ASN	PHE	ARG	LUE	LUE	GYL	ASN	VAL	LEU	VAL	CYS	VAL	LUE	ALA	HIS
Chimpanzee	ASN	PHE	ARG	LUE	LUE	GYL	ASN	VAL	LEU	VAL	CYS	VAL	LUE	ALA	HIS
Gorilla	ASN	PHE	LYS	LUE	LUE	GYL	ASN	VAL	LEU	VAL	CYS	VAL	LUE	ALA	HIS
Rhesus	ASN	PHE	LYS	LUE	LUE	GYL	ASN	VAL	LEU	VAL	CYS	VAL	LUE	ALA	HIS
Monkey															
Horse	ASN	PHE	ARG	LUE	LUE	GYL	ASN	VAL	LEU	ALA	LEU	VAL	VAL	ALA	ARG
Kangaroo	ASN	PHE	LYS	LUE	LUE	GYL	ASN	ILE	ILE	VAL	ILE	CYS	LEU	ALA	GLU

Figure 1 Comparison of hemoglobin molecules

2. Construct a data table which indicates the number of amino acid differences in the hemoglobin of each organism in comparison with that of the human and the positions in which they vary. The headings in the table should read "Organisms", "Number of Amino Acid Differences", and the "Positions in Which They Vary".

Part B. Inferring Evolutionary Relationships from Differences in Amino Acid Sequences

 Another commonly studied protein is cytochrome c. This protein, consisting of 104 amino acids, is located in the mitochondria of cells. There it functions a respiratory enzyme. Examine Figure 2. Using human cytochrome c as a standard, the amino acid differences between humans and a number of other organisms are shown.

Species Pairings	Number of Differences
Human-chimpanzee	0
Human-fruit fly	29
Human-horse	12
Human-pigeon	12
Human-rattlesnake	14
Human-red bread mold	48
Human-rhesus monkey	1
Human-screwworm fly	27
Human-snapping turtle	15
Human-tuna	21
Human-wheat	43

_	-
Figure	2

- 2. Use Figure 2 to construct a bar graph to show the amino acid differences between humans and other organisms.
- 3. Examine Figure 3. In this figure the cytochrome c of a fruit fly is used as a standard in comparing amino acid differences among several organisms. Construct a bar graph on Graph 2 to show these differences.

Species Pairings	Number of Differences
Fruit Fly-dogfish shark	26
Fruit Fly-pigeon	25
Fruit Fly-screwworm fly	2
Fruit Fly-silkworm moth	15
Fruit Fly-tobacco hornworm moth	14
Fruit Fly-wheat	47

Figure 3: cytochrome c species pairing

Part C: Analysis and Conclusion

1. Examine your data table from part A. On the basis of the hemoglobin similarity, what organisms appear to be most closely related to humans? Least closely related? Explain your answer.

For #2-7 consult bar graphs from part B.

- 2. On the basis of differences in their cytochrome c, which organisms appear to be most closely related to humans?
- 3. Which organisms appear to be least closely related to humans?
- 4. Which pair of the following organisms appears to be least closely related to each other? (Snapping turtle-tuna, snapping turtle-rattlesnake, or snapping turtle-pigeon) Give a reason for your answer.
- 5. Agree or disagree with the following statement and give reasons to support your answer. "Fruit flies appear to be more closely related to silkworm moths than they are to screwworm flies."
- 6. Name the pair of organisms that appear to be equally related to humans but not equally related to each other. Explain you answer.
- 7. Is it possible that the organisms in question 6 could be equally related to humans but not equally related to each other? Explain your answer.

Part D: Critical Thinking and Applications

- 1. There is a difference of only one amino acid in one chain of the hemoglobin of humans and gorillas. What might have caused this difference?
- 2. If the amino acid sequences in the proteins of two organisms are similar, why will their DNA also be similar?
- 3. With more recent technology in biology, what organic molecule is probably the most valuable for study to determine evolutionary relationships? Explain your answer.